General scalar renormalisation group equations at three-loop order

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation theory and renormalisation group equations

Renormalisation group (RG) methods are an essential ingredient in the study of non-perturbative problems in continuum and lattice formulations of quantum field theory. A number of RG equations have been proposed, where the starting point is the (infrared) regularised one loop effective action. Taking the derivative w.r.t. the infrared scale together with a subsequent one loop improvement leads ...

متن کامل

2-Loop Supersymmetric Renormalisation Group Equations Including R-Parity Violation and Aspects of Unification

We present the complete 2-loop renormalisation group equations of the superpotential parameters for the supersymmetric standard model including the full set of R-parity violating couplings. We use these equations to do a study of (a) gauge coupling unification, (b) bottom-tau unification, (c) the fixed-point structure of the top quark Yukawa coupling, and (d) two-loop bounds from perturbative u...

متن کامل

One - loop renormalisation of general N = 12 supersymmetric gauge theory

We investigate the one-loop renormalisability of a general N = 1 2 supersymmetric gauge theory coupled to chiral matter, and show the existence of an N =

متن کامل

Scheme Independence at First Order Phase Transitions and the Renormalisation Group

We analyse approximate solutions to an exact renormalisation group equation with particular emphasis on their dependence on the regularisation scheme, which is kept arbitrary. Physical quantities related to the coarse-grained potential of scalar QED display universal behaviour for strongly first-order phase transitions. Only subleading corrections depend on the regularisation scheme and are sup...

متن کامل

Math 220: First Order Scalar Semilinear Equations

(4) v′ r(s) = c(xr(s), yr(s), vr(s)). Note that here the subscript r denotes a parameter, not a derivative! We may equally well write xr(s) = x(r, s), yr(s) = y(r, s), and we will do so; we adopted the subscript notation to emphasize that along each integral curve r is fixed, i.e. is a constant. Which parameterization should we use? We are normally also given initial conditions along a curve Γ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2020

ISSN: 1029-8479

DOI: 10.1007/jhep12(2020)012