Generalisation of a “square” functional equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of a functional equation for square root spirals

Keywords---Hyers-Ulam-Rassias stability, Functional equation, Riemann zeta function, Square root spital. 1. I N T R O D U C T I O N The staxting point of studying the stability of functional equations seems to be the famous talk of Ulam [2] in 1940, in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of group homomorphisms. Let G1...

متن کامل

Intuitionistic fuzzy stability of a quadratic and quartic functional equation

In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.

متن کامل

A quaternionic generalisation of the Riccati differential equation

A quaternionic partial differential equation is shown to be a generalisation of the traditional Riccati equation and its relationship with the Schrödinger equation is established. Various approaches to the problem of finding particular solutions to this equation are explored, and the generalisations of two theorems of Euler on the Riccati equation, which correspond to this partial differential ...

متن کامل

stability of the quadratic functional equation

In the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{E}$$ isgiven where $sigma$ is an involution of the normed space $E$ and$k$ is a fixed positive integer. Furthermore we investigate theHyers-Ulam-Rassias stability of the functional equation. TheHyers-Ulam stability on unbounded domains is also studied.Applic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1975

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1975.57.419