Generalised power graph compression reveals dominant relationship patterns in complex networks
نویسندگان
چکیده
منابع مشابه
Generalised power graph compression reveals dominant relationship patterns in complex networks
We introduce a framework for the discovery of dominant relationship patterns in complex networks, by compressing the networks into power graphs with overlapping power nodes. When paired with enrichment analysis of node classification terms, the most compressible sets of edges provide a highly informative sketch of the dominant relationship patterns that define the network. In addition, this pro...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Graph analysis of cortical networks reveals complex anatomical communication substrate.
Sensory information entering the nervous system follows independent paths of processing such that specific features are individually detected. However, sensory perception, awareness, and cognition emerge from the combination of information. Here we have analyzed the corticocortical network of the cat, looking for the anatomical substrate which permits the simultaneous segregation and integratio...
متن کاملApplication of Generalised Regression Neural Networks in Lossless Data Compression
Neural networks are a popular technology that exploits massive parallelism and distributed storage and processing for speed and error tolerance. Most neural networks tend to rely on linear, step or sigmoidal activation functions for decision making. The generalised regression neural network (GRNN) is a radial basis network (RBN) which uses the Gaussian activation function in its processing elem...
متن کاملGeneralised Compositionality in Graph Transformation
We present a notion of composition applying both to graphs and to rules, based on graph and rule interfaces along which they are glued. The current paper generalises a previous result in two different ways. Firstly, rules do not have to form pullbacks with their interfaces; this enables graph passing between components, meaning that components may “learn” and “forget” subgraphs through communic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2014
ISSN: 2045-2322
DOI: 10.1038/srep04385