Generalization of Clustering Coefficients to Signed Correlation Networks
نویسندگان
چکیده
منابع مشابه
Generalization of Clustering Coefficients to Signed Correlation Networks
The recent interest in network analysis applications in personality psychology and psychopathology has put forward new methodological challenges. Personality and psychopathology networks are typically based on correlation matrices and therefore include both positive and negative edge signs. However, some applications of network analysis disregard negative edges, such as computing clustering coe...
متن کاملClustering Coefficients for Correlation Networks
Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentiona...
متن کاملA Correlation Clustering Approach to Link Classification in Signed Networks
Motivated by social balance theory, we develop a theory of link classification in signed networks using the correlation clustering index as measure of label regularity. We derive learning bounds in terms of correlation clustering within three fundamental transductive learning settings: online, batch and active. Our main algorithmic contribution is in the active setting, where we introduce a new...
متن کاملExtended Clustering Coefficients : Generalization of Clustering Coefficients in Small - World Networks
The clustering coefficient C of a network, which is a measure of direct connectivity between neighbors of the various nodes, ranges from 0 (for no connectivity) to 1 (for full connectivity). We define extended clustering coefficients C(h) of a small-world network based on nodes that are at distance h from a source node, thus generalizing distance-1 neighborhoods employed in computing the ordina...
متن کاملA Correlation Clustering Approach to Link Classification in Signed Networks -- Full Version --
Motivated by social balance theory, we develop a theory of link classification in signed networks using the correlation clustering index as measure of label regularity. We derive learning bounds in terms of correlation clustering within three fundamental transductive learning settings: online, batch and active. Our main algorithmic contribution is in the active setting, where we introduce a new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2014
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0088669