Generalization of Interpolation Inequalities
نویسندگان
چکیده
منابع مشابه
On Generalization of Cebysev Type Inequalities
In this paper, we establish new Cebysev type integral inequalities involving functions whose derivatives belong to L_{p} spaces via certain integral identities.
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملRelative rearrangement and interpolation inequalities
We prove here that the Poincaré-Sobolev pointwise inequalities for the relative rearrangement can be considered as the root of a great number of inequalities in various sets not necessarily vector spaces. In particular, new interpolation inequalities can be derived. Reordenamiento relativo y desigualdades de interpolación Resumen. Mostramos que las desigualdades puntuales de Poincaré-Sobolev pa...
متن کاملInterpolation Inequalities in Pattern Formation
We prove some interpolation inequalities which arise in the analysis of pattern formation in physics. They are the strong version of some already known estimates in weak form that are used to give a lower bound of the energy in many contexts (coarsening and branching in micromagnetics and superconductors). The main ingredient in the proof of our inequalities is a geometric construction which wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1998
ISSN: 0022-247X
DOI: 10.1006/jmaa.1998.6068