Generalized Bhaskar Rao designs of block size three
نویسندگان
چکیده
منابع مشابه
Generalized Bhaskar Rao designs with block size three
We show that the necessary conditions λ = 0 (mod IGI), λ(v-l)=0 (mod2), λv(v 1) = [0 (mod 6) for IGI odd, (0 (mod 24) for IGI even, are sufficient for the existence of a generalized Bhaskar Rao design GBRD(v,b,r,3,λ;G) for the elementary abelian group G, of each order IGI. Disciplines Physical Sciences and Mathematics Publication Details Seberry, J, Generalized Bhaskar Rao designs with block si...
متن کاملOn Bhaskar Rao designs of block size four
We show that Bhaskar Rao designs of type BRD(v, b, r, 4, 6) exist for v = 0,1 (mod 5) and of type BRD (v, b, r, 4,12) exist for all v ≥ 4. Disciplines Physical Sciences and Mathematics Publication Details de Launey, W and Seberry, J, On Bhaskar Rao designs of block size four, Combinatorics and Applications, Proceedings of the Seminar on Combinatorics and its Applications in honour of Professor ...
متن کاملGeneralized Bhaskar Rao Designs with Block Size 3 over Finite Abelian Groups
We show that if G is a finite Abelian group and the block size is 3, then the necessary conditions for the existence of a (v, 3, λ;G) GBRD are sufficient. These necessary conditions include the usual necessary conditions for the existence of the associated (v, 3, λ) BIBD plus λ ≡ 0 (mod |G|), plus some extra conditions when |G| is even, namely that the number of blocks be divisible by 4 and, if...
متن کاملPartial generalized Bhaskar Rao designs over abelian groups
Let G = EA(g) of order g be the abelian group ZPl X ZPl X . .. X ZPl X ... X ZPn X ZPn X ... X ZPII n whereZpi occurs ri times with IT pp the prime decomposition of g. i = 1 It is shown that the necessary conditions A==O(modg) v?:: 3n v == 0 (mod n) A(V n) == 0 (mod 2) v v n 0 (mod 24) if g is even, A ( _ ) = (0 (mod 6) if g is odd, are sufficient for the existence of a PGBRD(v, 3, A, n; EA(g)).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Planning and Inference
سال: 1985
ISSN: 0378-3758
DOI: 10.1016/0378-3758(85)90042-4