Generalized Dirichlet Distribution Based on Confluent Hypergeometric Series

نویسندگان

چکیده

Dirichlet distribution is a kind of high-dimensional continuous probability distribution, which has important applications in the fields statistics, machine learning and bioinformatics. In this paper, based on gamma we study two two-dimensional random variables. Then derive properties these variables by using non-central confluent hypergeometric series. From properties, find follow generalized distributions. Applying series to broadens research distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On modified asymptotic series involving confluent hypergeometric functions

A modification of standard Poincaré asymptotic expansions for functions defined by means of Laplace transforms is analyzed. This modification is based on an alternative power series expansion of the integrand, and the convergence properties are seen to be superior to those of the original asymptotic series. The resulting modified asymptotic expansion involves confluent hypergeometric functions ...

متن کامل

On the confluent hypergeometric function coming from the Pareto distribution

Making use of the confluent hypergeometric function we can obtain the Laplace-Stieltje transform of the Pareto distribution in the following form ζ(s) = hU(1; 1− h; s) = 1F1(1; 1− h; s)− Γ(1− h)s1F1(1 + h; 1 + h; s). About this transform, we obtain an identity, Γ(1 + h)|U(1, 1− h, s)|2 = ∫ ∞ 0 ∫ ∞ 0 λhe−λ−y |λ+ s|2 + λy 2000 Mathematical Subject Classification: 33C15, 60E07

متن کامل

Polynomial series expansions for confluent and Gaussian hypergeometric functions

Based on the Hadamard product of power series, polynomial series expansions for confluent hypergeometric functions M(a, c; ·) and for Gaussian hypergeometric functions F (a, b; c; ·) are introduced and studied. It turns out that the partial sums provide an interesting alternative for the numerical evaluation of the functions M(a, c; ·) and F (a, b; c; ·), in particular, if the parameters are al...

متن کامل

Properties of the Bivariate Confluent Hypergeometric Function Kind 1 Distribution

The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1 1 x2 2 1 F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √ X1X2. The density function of 2 √ X1X2 is represented in terms of modified Bessel function of the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Academic journal of science and technology

سال: 2023

ISSN: ['2771-3032']

DOI: https://doi.org/10.54097/ajst.v5i2.6461