Generalized divisor problem
نویسندگان
چکیده
منابع مشابه
Generalized divisor problem
In 1952 H.E. Richert by means of the theory of Exponents Pairs (developed by J.G. van der Korput and E. Phillips ) improved the above O-term ( see [8] or [4] pag. 221 ). In 1969 E. Krätzel studied the three-dimensional problem. Besides, M.Vogts (1981) and A. Ivić (1981) got some interesting results which generalize the work of P.G. Schmidt of 1968. In 1987 A.Ivić obtained Ω-results for ∫ T 1 ∆ ...
متن کاملOn Dirichlet ' S Divisor Problem
tact, whereas those for a = 0.02 imply only 25% more frequent contacts than the all-ornone hypothesis but with rather high though rapidly diminishing attack rates. 10 Schuman and Doull, Amer. Jour. Pub. Health, 30, Supplement to March, 1940, p. 21, state: "From these estimates of carrier prevalence and froni the average annual increment in Shick-negatives, an estimate may be made of the number ...
متن کاملGeneralizing the Titchmarsh Divisor Problem
Let a be a natural number different from 0. In 1963, Linnik proved the following unconditional result about the Titchmarsh divisor problem ∑ p≤x d(p− a) = cx + O ( x log log x log x ) where c is a constant dependent on a. Titchmarsh proved the above result assuming GRH for Dirichlet L-functions in 1931. We establish the following asymptotic relation: ∑ p≤x p≡a mod k d ( p− a k ) = Ckx + O ( x l...
متن کاملSome Asymptotic Formulas on Generalized Divisor Functions
1 . Throughout this paper, we use the following notation : c•1 , c2 , . . ., X0 , X1 , . . . denote positive absolute constants. We denote the number of elements of the finite set S by BSI . We write ex =exp (x) . We denote the least prime factor of n by p(n) . We write pall n if pain but pa+1 f n . v(n) denotes the number of the distinct prime factors of n, while the number of all the prime fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin
سال: 1995
ISSN: 1370-1444
DOI: 10.36045/bbms/1103408775