Generalized $h$-Statistics and Other Symmetric Functions
نویسندگان
چکیده
منابع مشابه
Generalized symmetric functions
It is well known that over an infinite field the ring of symmetric functions in a finite number of variables is isomorphic to the one of polynomial functions on matrices that are invariants by the action of conjugation by general linear group. We generalize this result showing that the abelianization of the algebra of the symmetric tensors of fixed order over a free associative algebra is isomo...
متن کاملDistance 2 Permutation Statistics and Symmetric Functions
This paper is presented as an undergraduate honors thesis by Christopher Severs under the supervision of Professor Jeffrey Remmel at UCSD. The aim of the project was to read material about permutation statistics and generating functions for the ring of symmetric functions and then address a problem not covered in the literature to date. In working on this project the author gained a much better...
متن کاملGeneralized Bernstein Polynomials and Symmetric Functions
We begin by classifying all solutions of two natural recurrences that Bernstein polynomials satisfy. The first scheme gives a natural characterization of Stancu polynomials. In Section 2, we identify the Bernstein polynomials as coefficients in the generating function for the elementary symmetric functions, which gives a new proof of total positivity for Bernstein polynomials, by identifying th...
متن کاملGeneralized Symmetric Functions and Invariants of Matrices
It is well known that over an infinite field the ring of symmetric functions in a finite number of variables is isomorphic to the one of polynomial functions on a single matrix that are invariants by the action of conjugation by general linear group. We generalize this result showing that the abelianization of the algebra of the symmetric tensors of fixed order over a free associative algebra i...
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1974
ISSN: 0090-5364
DOI: 10.1214/aos/1176342774