GENERALIZED LAPLACE INFERENCE IN MULTIPLE CHANGE-POINTS MODELS
نویسندگان
چکیده
Under the classical long-span asymptotic framework, we develop a class of generalized laplace (GL) inference methods for change-point dates in linear time series regression model with multiple structural changes analyzed in, e.g., Bai and Perron (1998, Econometrica 66, 47–78). The GL estimator is defined by an integration rather than optimization-based method relies on LS criterion function. It interpreted as (non-Bayesian) estimator, proposed retain frequentist interpretation. This approach provides better approximation about uncertainty data change-points relative to existing methods. On theoretical side, depending some input (smoothing) parameter, estimators exhibits dual limiting distribution, namely shrinkage distribution or Bayes-type distribution. We propose based highest density regions using latter show that it has attractive properties not shared other popular alternatives, i.e., bet-proof. Simulations confirm these translate good finite-sample performance.
منابع مشابه
Bayesian Computational Methods for Inference in Multiple Change-points Models
Multiple change-point models provide a exible and interpretable framework for representation of temporal heterogeneity in data. In addition to the locations of changepoints, these models typically involve parameters which specify the distributions of data between change-points and other quantities. However, the values of these parameters are usually unknown and need to be inferred from the data...
متن کاملOn-line Inference for Multiple Change Points Problems
We propose an on-line algorithm for exact filtering of multiple changepoint problems. This algorithm enables simulation from the true joint posterior distribution of the number and position of the changepoints for a class of changepoint models. The computational cost of this exact algorithm is quadratic in the number of observations. We further show how resampling ideas from particle filters ca...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملAsymmetric Univariate and Bivariate Laplace and Generalized Laplace Distributions
Alternative specifications of univariate asymmetric Laplace models are described and investigated. A more general mixture model is then introduced. Bivariate extensions of these models are discussed in some detail, with particular emphasis on associated parameter estimation strategies. Multivariate versions of the models are briefly introduced.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Econometric Theory
سال: 2021
ISSN: ['1469-4360', '0266-4666']
DOI: https://doi.org/10.1017/s0266466621000013