Generalized Metric Spaces Do Not Have the Compatible Topology

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the topology of D-metric spaces and generation of D-metric spaces from metric spaces

An example of a D-metric space is given, in which D-metric convergence does not define a topology and in which a convergent sequence can have infinitely many limits. Certain methods for constructing D-metric spaces from a given metric space are developed and are used in constructing (1) an example of a D-metric space in which D-metric convergence defines a topology which is T1 but not Hausdorff...

متن کامل

Metric spaces in synthetic topology

We investigate the relationship between the synthetic approach to topology, in which every set is equipped with an intrinsic topology, and constructive theory of metric spaces. We relate the synthetic notion of compactness of Cantor space to Brouwer’s Fan Principle. We show that the intrinsic and metric topologies of complete separable metric spaces coincide if they do so for Baire space. In Ru...

متن کامل

Complete Generalized Metric Spaces

The well-known Banach’s fixed point theorem asserts that ifD X, f is contractive and X, d is complete, then f has a unique fixed point inX. It is well known that the Banach contraction principle 1 is a very useful and classical tool in nonlinear analysis. In 1969, Boyd and Wong 2 introduced the notion ofΦ-contraction. A mapping f : X → X on a metric space is called Φ-contraction if there exists...

متن کامل

On the topological equivalence of some generalized metric spaces

‎The aim of this paper is to establish the equivalence between the concepts‎ ‎of an $S$-metric space and a cone $S$-metric space using some topological‎ ‎approaches‎. ‎We introduce a new notion of a $TVS$-cone $S$-metric space using‎ ‎some facts about topological vector spaces‎. ‎We see that the known results on‎ ‎cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained‎ from...

متن کامل

Weakly Compatible Maps in Cone Metric Spaces

The object of this paper is to establish a theorem for a unique common fixed point of four self mappings, weakly compatibile in pairs and satisfying a generalized contractive condition in a cone metric space. Our result generalizes and synthesizes the results of Abbas– Jungck [1], Arshad et al. [2], Huang–Zhang [3] and Vetro [8].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2014

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2014/458098