Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis
نویسندگان
چکیده
منابع مشابه
Recurrent neural network for dynamic portfolio selection
In this paper, the dynamic portfolio selection problem is considered. The Elman network is first designed to simulate the dynamic security behavior. Then, the dynamic covariance matrix is estimated by the cross-covariance matrices. Finally, the dynamic portfolio selection model is formulated. In addition, a numerical example is used to demonstrate the proposedmethod and compare with the vector ...
متن کاملHierarchical Recurrent Neural Network for Document Modeling
This paper proposes a novel hierarchical recurrent neural network language model (HRNNLM) for document modeling. After establishing a RNN to capture the coherence between sentences in a document, HRNNLM integrates it as the sentence history information into the word level RNN to predict the word sequence with cross-sentence contextual information. A two-step training approach is designed, in wh...
متن کاملDynamic causal modeling with neural fields
The aim of this paper is twofold: first, to introduce a neural field model motivated by a well-known neural mass model; second, to show how one can estimate model parameters pertaining to spatial (anatomical) properties of neuronal sources based on EEG or LFP spectra using Bayesian inference. Specifically, we consider neural field models of cortical activity as generative models in the context ...
متن کاملA Recurrent Neural Network Model for solving CCR Model in Data Envelopment Analysis
In this paper, we present a recurrent neural network model for solving CCR Model in Data Envelopment Analysis (DEA). The proposed neural network model is derived from an unconstrained minimization problem. In the theoretical aspect, it is shown that the proposed neural network is stable in the sense of Lyapunov and globally convergent to the optimal solution of CCR model. The proposed model has...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NeuroImage
سال: 2018
ISSN: 1053-8119
DOI: 10.1016/j.neuroimage.2018.05.042