Generalized Reflexive and Generalized Antireflexive Solutions to a System of Matrix Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The .p;q/ Generalized Anti-reflexive Extremal Rank Solutions to a System of Matrix Equations

Let n n complex matrices P andQ be nontrivial generalized reflection matrices, i.e., P D P D P 1 ¤ In, Q DQ DQ 1 ¤ In. A complex matrix A with order n is said to be a .P;Q/ generalized anti-reflexive matrix, if PAQ D A. We in this paper mainly investigate the .P;Q/ generalized anti-reflexive maximal and minimal rank solutions to the system of matrix equation AX D B . We present necessary and su...

متن کامل

An Iterative Algorithm for the Generalized Reflexive Solutions of the Generalized Coupled Sylvester Matrix Equations

An iterative algorithm is constructed to solve the generalized coupled Sylvester matrix equations AXB − CYD,EXF − GYH M,N , which includes Sylvester and Lyapunov matrix equations as special cases, over generalized reflexive matrices X and Y . When the matrix equations are consistent, for any initial generalized reflexive matrix pair X1, Y1 , the generalized reflexive solutions can be obtained b...

متن کامل

a system of generalized resolvent equations involving generalized pseudocontractive mapping

generalized resolvent equations; variational inclusions; algorithm; convergence; generalized pseudocontractive mapping

متن کامل

On the numerical solution of generalized Sylvester matrix equations

‎The global FOM and GMRES algorithms are among the effective‎ ‎methods to solve Sylvester matrix equations‎. ‎In this paper‎, ‎we‎ ‎study these algorithms in the case that the coefficient matrices‎ ‎are real symmetric (real symmetric positive definite) and extract‎ ‎two CG-type algorithms for solving generalized Sylvester matrix‎ ‎equations‎. ‎The proposed methods are iterative projection metho...

متن کامل

Minimization Problems for Generalized Reflexive and Generalized Anti-Reflexive Matrices

Let R ∈ Cm×m and S ∈ Cn×n be nontrivial unitary involutions, i.e., R = R = R−1 = ±Im and S = S = S−1 = ±In. A ∈ Cm×n is said to be a generalized reflexive (anti-reflexive) matrix if RAS = A (RAS = −A). Let ρ be the set of m × n generalized reflexive (anti-reflexive) matrices. Given X ∈ Cn×p, Z ∈ Cm×p, Y ∈ Cm×q and W ∈ Cn×q, we characterize the matrices A in ρ that minimize ‖AX−Z‖2+‖Y HA−WH‖2, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2014

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2014/352327