Generalized sparse covariance-based estimation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual-specific, sparse inverse covariance estimation in generalized estimating equations

This paper proposes a data-driven approach that derives individual-specific sparse working correlation matrices for generalized estimating equations (GEEs). The approach is motivated by the observation that, in some applications of the GEE, the covariance structure across individuals is heterogeneous and cannot be appropriately captured by a single correlationmatrix. The proposed approach enjoy...

متن کامل

0 Sparse Inverse Covariance Estimation

Recently, there has been focus on penalized loglikelihood covariance estimation for sparse inverse covariance (precision) matrices. The penalty is responsible for inducing sparsity, and a very common choice is the convex l1 norm. However, the best estimator performance is not always achieved with this penalty. The most natural sparsity promoting “norm” is the non-convex l0 penalty but its lack ...

متن کامل

Sparse permutation invariant covariance estimation

The paper proposes a method for constructing a sparse estimator for the inverse covariance (concentration) matrix in high-dimensional settings. The estimator uses a penalized normal likelihood approach and forces sparsity by using a lasso-type penalty. We establish a rate of convergence in the Frobenius norm as both data dimension p and sample size n are allowed to grow, and show that the rate ...

متن کامل

Estimation of Functionals of Sparse Covariance Matrices.

High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we ...

متن کامل

Sparse inverse covariance estimation with the lasso

We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm— the Graphical Lasso— that is remarkably fast: it solves a 1000 node problem (∼ 500, 000 parameters) in at most a minute, and is 30 to 4000 times faster than competing methods. It also provides a concep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Signal Processing

سال: 2018

ISSN: 0165-1684

DOI: 10.1016/j.sigpro.2017.09.010