Generalized the Divisor Sum Tk-Function of Graph
نویسندگان
چکیده
منابع مشابه
THE ZERO-DIVISOR GRAPH OF A MODULE
Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, sayΓ(RM), such that when M=R, Γ(RM) coincide with the zero-divisor graph of R. Many well-known results by D.F. Anderson and P.S. Livingston have been generalized for Γ(RM). We Will show that Γ(RM) is connected withdiam Γ(RM)≤ 3 and if Γ(RM) contains a cycle, then Γ(RM)≤4. We will also show tha...
متن کاملThe Sum Graph of Non-essential Submodules
Throughout this paper, R will denote a commutative ring with identity and M is a unitary R- module and Z will denote the ring of integers. We introduce the graph Ω(M) of module M with the set of vertices contain all nontrivial non-essential submodules of M. We investigate the interplay between graph-theoretic properties of Ω(M) and algebraic properties of M. Also, we assign the values of natura...
متن کاملDivisor-sum Fibers
Let s(·) denote the sum-of-proper-divisors function, that is, s(n) = ∑ d|n, d<n d. Erdős–Granville–Pomerance–Spiro conjectured that for any set A of asymptotic density zero, the preimage set s−1(A ) also has density zero. We prove a weak form of this conjecture: If (x) is any function tending to 0 as x→∞, and A is a set of integers of cardinality at most x 1 2 + , then the number of integers n ...
متن کاملThe sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
متن کاملthe zero-divisor graph of a module
let $r$ be a commutative ring with identity and $m$ an $r$-module. in this paper, we associate a graph to $m$, say ${gamma}({}_{r}m)$, such that when $m=r$, ${gamma}({}_{r}m)$ coincide with the zero-divisor graph of $r$. many well-known results by d.f. anderson and p.s. livingston have been generalized for ${gamma}({}_{r}m)$. we show that ${gamma}({}_{r}m)$ is connected with ${diam}({gamma}({}_...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: General Letters in Mathematics
سال: 2020
ISSN: 2519-9269,2519-9277
DOI: 10.31559/glm2020.8.2.4