Generalizing the Poincaré–Miranda theorem: the avoiding cones condition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizing the Coleman Hill Theorem

Following the work of Khare et al, we show that the generalization to systems with spontaneous symmetry breaking of the Coleman-Hill theorem to one-loop order, can be extended to the case including fermions with the most general interactions. Although the correction to the parity-odd part of the vacuum polarization looks complicated in the Higgs phase, it turns out that the correction to the Ch...

متن کامل

Bishop-Phelps type Theorem for Normed Cones

In this paper the notion of  support points of convex sets  in  normed cones is introduced and it is shown that in a  continuous normed cone, under the appropriate conditions, the set of support points of a  bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.

متن کامل

Generalizing Incremental Condition Estimation

This paper presents a generalization of incremental condition estimation, a technique for tracking the extremal singular values of a triangular matrix. While the original approach allowed for the estimation of the largest or smallest singular value, the generalized scheme allows for the estimation of any number of extremal singular values. For example, we can derive estimates for the three smal...

متن کامل

Generalizing the Splits Equivalence Theorem and Four Gamete Condition: Perfect Phylogeny on Three-State Characters

We study the three state perfect phylogeny problem and establish a generalization of the four gamete condition (also called the Splits Equivalence Theorem) for sequences over three state characters. Our main result is that a set of input sequences over three state characters allows a perfect phylogeny if and only if every subset of three characters allows a perfect phylogeny. In establishing th...

متن کامل

Gap forcing: Generalizing the Lévy-Solovay theorem

The Levy-Solovay Theorem [LevSol67] limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong card...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata (1923 -)

سال: 2015

ISSN: 0373-3114,1618-1891

DOI: 10.1007/s10231-015-0519-6