Generation of Electroencephalography Recognition Patterns via Genetic Algorithm
نویسندگان
چکیده
منابع مشابه
Automatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملOptimal Placement and Sizing of Distributed Generation Via an Improved Nondominated Sorting Genetic Algorithm II
The use of distributed generation units in distribution networks has attracted the attention of network managers due to its great benefits. In this research, the location and determination of the capacity of distributed generation (DG) units for different purposes has been studied simultaneously. The multi-objective functions in the optimization model are reducing system line losses; reducing v...
متن کاملPattern Recognition via Vasconcelos' Genetic Algorithm
In this paper we describe a heuristic approach to the problem of identifying a pattern embedded within a figure from a predefined set of patterns via the utilization of a genetic algorithm (GA). By applying this GA we are able to recognize a set of simple figures independently of scale, translation and rotation. We discuss the fact that this GA is, purportedly, the best among a set of alternati...
متن کاملautomatic face recognition via local directional patterns
automatic facial recognition has many potential applications in different areas of humancomputer interaction. however, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. in this paper, we present a new appearance based feature descriptor,the local directional pattern (ldp), to represent facial geometry and analyze its performance inrecognition. an ldp feat...
متن کاملCellular-Genetic Key Generation Algorithm
The Genetic Algorithm (GA) requires randomized initial population so as to give requisite results. The work proposes the use of Cellular Automata (CA) to generate the initial population for GA. The numbers generated by clubbing these two processes will make a better set of random numbers as compared to existing methodologies. The quality of the random numbers generated has been tested by Gap Te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 2002
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.38.1041