Generators for finite simple Moufang loops
نویسندگان
چکیده
منابع مشابه
Generators for Finite Simple Moufang Loops
Moufang loops are one of the best-known generalizations of groups. There is only one countable family of nonassociative finite simple Moufang loops, arising from the split octonion algebras. We prove that every member of this family is generated by three elements, using the classical results on generators of unimodular groups.
متن کاملGenerators of Nonassociative Simple Moufang Loops over Finite Prime Fields
The first class of nonassociative simple Moufang loops was discovered by L. Paige in 1956 [9], who investigated Zorn’s and Albert’s construction of simple alternative rings. M. Liebeck proved in 1987 [7] that there are no other finite nonassociative simple Moufang loops. We can briefly describe the class as follows: For every finite field F, there is exactly one simple Moufang loop. Recall Zorn...
متن کاملon the commutativity degree in finite moufang loops
the textit{commutativity degree}, $pr(g)$, of a finite group $g$ (i.e. the probability that two (randomly chosen) elements of $g$ commute with respect to its operation)) has been studied well by many authors. it is well-known that the best upper bound for $pr(g)$ is $frac{5}{8}$ for a finite non--abelian group $g$. in this paper, we will define the same concept for a finite non--abelian textit{...
متن کاملOn Moufang A-loops
In a series of papers from the 1940’s and 1950’s, R.H. Bruck and L.J. Paige developed a provocative line of research detailing the similarities between two important classes of loops: the diassociative A-loops and the Moufang loops ([1]). Though they did not publish any classification theorems, in 1958, Bruck’s colleague, J.M. Osborn, managed to show that diassociative, commutative A-loops are ...
متن کاملAutomorphism Groups of Simple Moufang Loops over Perfect Fields
Let F be a perfect field and M(F ) the nonassociative simple Moufang loop consisting of the units in the (unique) split octonion algebra O(F ) modulo the center. Then Aut(M(F )) is equal to G2(F )o Aut(F ). In particular, every automorphism of M(F ) is induced by a semilinear automorphism of O(F ). The proof combines results and methods from geometrical loop theory, groups of Lie type and compo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Group Theory
سال: 2003
ISSN: 1433-5883,1435-4446
DOI: 10.1515/jgth.2003.012