Generic bifurcation of periodic points

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degenerate Bifurcation Points of Periodic Solutions of Autonomous Hamiltonian Systems

We study connected branches of non-constant 2π-periodic solutions of the Hamilton equation ẋ(t) = λJ∇H(x(t)), where λ ∈ (0,+∞), H ∈ C(R ×Rn,R) and ∇H(x0) = [ A 0 0 B ] for x0 ∈ ∇H−1(0). The Hessian ∇H(x0) can be singular. We formulate sufficient conditions for the existence of such branches bifurcating from given (x0, λ0). As a consequence we prove theorems concerning the existence of connected...

متن کامل

New Criteria of Generic Hyperbolicity Based on Periodic Points

We prove that, if a mild condition on the hyperbolicity of the periodic points holds for any diffeomorphism in a residual subset of a C-open set U , then such set U exhibits a residual subset A of Axiom A diffeomorphisms. We also prove an analogous result for nonsingular endomorphisms: if a mild expanding condition holds for the periodic set of local diffeomorphisms belonging in a residual subs...

متن کامل

Density of the Periodic Points in the Interval Set

The dynamical system (f,R) is introduced and some of its properties are investigated. It is proven that there is an invariant set Λ on which the periodic points of f are dense.

متن کامل

On the Structure of the Set of Bifurcation Points of Periodic Solutions for Multiparameter Hamiltonian Systems

This paper deals with periodic solutions of the Hamilton equation ẋ(t) = J∇xH(x(t), λ), where H ∈ C2,0(R2n × Rk,R) and λ ∈ Rk is a parameter. Theorems on global bifurcation of solutions with periods 2π j , j ∈ N, from a stationary point (x0, λ0) ∈ R2n × Rk are proved. ∇xH(x0, λ0) can be singular. However, it is assumed that the local topological degree of ∇xH(·, λ0) at x0 is nonzero. For system...

متن کامل

Bifurcation of Periodic Delay Differential Equations at Points of 1:4 Resonance

BIFURCATION OF PERIODIC DELAY DIFFERENTIAL EQUATIONS AT POINTS OF 1:4 RESONANCE ∗ G. RÖST † Abstract. The time-periodic scalar delay differential equation ẋ(t) = γf(t, x(t − 1)) is considered, which leads to a resonant bifurcation of the equilibrium at critical values of the parameter. Using Floquet theory, spectral projection and center manifold reduction, we give conditions for the stability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1970

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1970-0259289-x