Generic symmetric matrix pencils with bounded rank

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Placement for Regular Matrix Pencils with Rank One Perturbations

A regular matrix pencil sE − A and its rank one perturbations are considered. We determine the sets in C ∪ {∞} which are the eigenvalues of the perturbed pencil. We show that the largest Jordan chains at each eigenvalue of sE − A may disappear and the sum of the length of all destroyed Jordan chains is the number of eigenvalues (counted with multiplicities) which can be placed arbitrarily in C∪...

متن کامل

Generic Change of the Partial Multiplicities of Regular Matrix Pencils under Low-Rank Perturbations

We describe the generic change of the partial multiplicities at a given eigenvalue λ0 of a regular matrix pencil A0 + λA1 under perturbations with low normal rank. More precisely, if the pencil A0 + λA1 has exactly g nonzero partial multiplicities at λ0, then for most perturbations B0 + λB1 with normal rank r < g the perturbed pencil A0 + B0 + λ(A1 + B1) has exactly g − r nonzero partial multip...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Combinatorial Analysis of Generic Matrix Pencils

This paper investigates the Kronecker canonical form of matrix pencils under the genericity assumption that the set of nonzero entries is algebraically independent. We provide a combinatorial characterization of the sums of the row/column indices supported by efficient bipartite matching algorithms. We also give a simple alternative proof for a theorem of Poljak on the generic ranks of matrix p...

متن کامل

Rayleigh-Ritz and Lanctos Methods for Symmetric Matrix Pencils*

We are concerned with eigenvalue problems for definite and indefinite symmetric matrix pencils. First, Rayleigh-Ritz methods are formulated and, using Krylov subspaces, a convergence analysis is presented for definite pencils. Second, generalized symmetric Lanczos algorithms are introduced as a special Rayleigh-Ritz method. In particular, an a posteriori convergence criterion is demonstrated by...

متن کامل

Orbit Closure Hierarchies of Skew-symmetric Matrix Pencils

We study how small perturbations of a skew-symmetric matrix pencil may change its canonical form under congruence. This problem is also known as the stratification problem of skewsymmetric matrix pencil orbits and bundles. In other words, we investigate when the closure of the congruence orbit (or bundle) of a skew-symmetric matrix pencil contains the congruence orbit (or bundle) of another ske...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Spectral Theory

سال: 2020

ISSN: 1664-039X

DOI: 10.4171/jst/316