Geodesics and Curvature of Möbius Invariant Metrics
نویسندگان
چکیده
منابع مشابه
Homogeneous geodesics of left invariant Finsler metrics
In this paper, we study the set of homogeneous geodesics of a leftinvariant Finsler metric on Lie groups. We first give a simple criterion that characterizes geodesic vectors. As an application, we study some geometric properties of bi-invariant Finsler metrics on Lie groups. In particular a necessary and sufficient condition that left-invariant Randers metrics are of Berwald type is given. Fin...
متن کاملHolomorphic Curvature of Finsler Metrics and Complex Geodesics
If D is a bounded convex domain in C , then the work of Lempert [L] and Royden-Wong [RW] (see also [A]) show that given any point p ∈ D and any non-zero tangent vector v ∈ C at p, there exists a holomorphic map φ:U → D from the unit disk U ⊂ C into D passing through p and tangent to v in p which is an isometry with respect to the hyperbolic distance of U and the Kobayashi distance of D. Further...
متن کاملLecture VI: Geodesics and curvature
In flat spacetime, we defined the acceleration as a = dv/dτ . The existence of the covariant derivative has made it possible to define the derivative of the velocity in curved spacetime. To do this in the most general way possible, consider any trajectory P(λ), parameterized by λ (which may be the proper time τ , but we won’t impose this since we want to be able to treat photons as well), and w...
متن کاملOn conformal transformation of special curvature of Kropina metrics
An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...
متن کاملInvariant Metrics with Nonnegative Curvature on Compact Lie Groups
We classify the left-invariant metrics with nonnegative sectional curvature on SO(3) and U(2).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2008
ISSN: 0035-7596
DOI: 10.1216/rmj-2008-38-3-891