Geometric and p-adic Modular Forms of Half-Integral Weight
نویسندگان
چکیده
منابع مشابه
p-adic interpolation of half-integral weight modular forms
The p-adic interpolation of modular forms on congruence subgroups of SL2(Z) has been succesfully used in the past to interpolate values of L-series. In [12], Serre interpolated the values at negative integers of the ζ-series of a totally real number field (in fact of L-series of powers of the Teichmuller character) by interpolating Eisenstein series, which are holomorphic modular forms, and loo...
متن کاملP-adic Family of Half-integral Weight Modular Forms and Overconvergent Shintani Lifting
Abstract. The goal of this paper is to construct the p-adic analytic family of overconvergent half-integral weight modular forms using Hecke-equivariant overconvergent Shintani lifting. The classical Shintani map(see [Shn]) is the Hecke-equivariant map from the space of cusp forms of integral weight to the space of cusp forms of half-integral weight. Glenn Stevens proved in [St1] that there is ...
متن کاملP -adic Family of Half-integral Weight Modular Forms via Overconvergent Shintani Lifting
The classical Shintani map (see [Shn]) is the Hecke-equivariant map from the space of cusp forms of integral weight to the space of cusp forms of half-integral weight. In this paper, we will construct a Hecke-equivariant overconvergent Shintani lifting which interpolates the classical Shintani lifting p-adically, following the idea of G. Stevens in [St1]. In consequence, we get a formal q-expan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 2006
ISSN: 0373-0956,1777-5310
DOI: 10.5802/aif.2195