Geometric characterization of strongly normal extensions
نویسندگان
چکیده
منابع مشابه
Extensions of strongly alpha-reversible rings
We introduce the notion ofstrongly $alpha$-reversible rings which is a strong version of$alpha$-reversible rings, and investigate its properties. We firstgive an example to show that strongly reversible rings need not bestrongly $alpha$-reversible. We next argue about the strong$alpha$-reversibility of some kinds of extensions. A number ofproperties of this version are established. It is shown ...
متن کاملextensions of strongly alpha-reversible rings
we introduce the notion ofstrongly $alpha$-reversible rings which is a strong version of$alpha$-reversible rings, and investigate its properties. we firstgive an example to show that strongly reversible rings need not bestrongly $alpha$-reversible. we next argue about the strong$alpha$-reversibility of some kinds of extensions. a number ofproperties of this version are established. it is shown ...
متن کاملThe Differential Galois Theory of Strongly Normal Extensions
Differential Galois theory, the theory of strongly normal extensions, has unfortunately languished. This may be due to its reliance on Kolchin’s elegant, but not widely adopted, axiomatization of the theory of algebraic groups. This paper attempts to revive the theory using a differential scheme in place of those axioms. We also avoid using a universal differential field, instead relying on a c...
متن کاملMatching extensions of strongly regular graphs
Let J3 be the number of vertices commonly adjacent to any pair of non-adjacent vertices. It is proved that every strongly regular graph with even order and J3 ~ 1 is l-extendable. We also show that every strongly regular graph of degree at least 3 and cyclic edge connecti vity at least 3k -3 is 2-extendab Ie. Strongly regular graphs of k even order and of degree k at least 3 with J3 ~"3 are 2-e...
متن کاملUNRAMIFIED EXTENSIONS AND GEOMETRIC Zp-EXTENSIONS OF GLOBAL FUNCTION FIELDS
We study on finite unramified extensions of global function fields (function fields of one valuable over a finite field). We show two results. One is an extension of Perret’s result about the ideal class group problem. Another is a construction of a geometric Zp-extension which has a certain property.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2006
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-06-03868-2