Geometric ergodicity of Gibbs samplers for Bayesian general linear mixed models with proper priors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Ergodicity of Gibbs Samplers for Bayesian General Linear Mixed Models with Proper Priors

When a Bayesian version of the general linear mixed model is created by adopting a conditionally conjugate prior distribution, a simple block Gibbs sampler can be employed to explore the resulting intractable posterior density. In this article it is shown that, under mild conditions that nearly always hold in practice, the block Gibbs Markov chain is geometrically ergodic.

متن کامل

Geometric Ergodicity of Gibbs Samplers

Due to a demand for reliable methods for exploring intractable probability distributions, the popularity of Markov chain Monte Carlo (MCMC) techniques continues to grow. In any MCMC analysis, the convergence rate of the associated Markov chain is of practical and theoretical importance. A geometrically ergodic chain converges to its target distribution at a geometric rate. In this dissertation,...

متن کامل

On the Geometric Ergodicity of Two-variable Gibbs Samplers

A Markov chain is geometrically ergodic if it converges to its invariant distribution at a geometric rate in total variation norm. We study geometric ergodicity of deterministic and random scan versions of the two-variable Gibbs sampler. We give a sufficient condition which simultaneously guarantees both versions are geometrically ergodic. We also develop a method for simultaneously establishin...

متن کامل

Convergence Analysis of the Gibbs Sampler for Bayesian General Linear Mixed Models with Improper Priors by Jorge

Bayesian analysis of data from the general linear mixed model is challenging because any nontrivial prior leads to an intractable posterior density. However, if a conditionally conjugate prior density is adopted, then there is a simple Gibbs sampler that can be employed to explore the posterior density. A popular default among the conditionally conjugate priors is an improper prior that takes a...

متن کامل

Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models

We consider two Bayesian hierarchical one-way random effects models and establish geometric ergodicity of the corresponding random scan Gibbs samplers. Geometric ergodicity, along with a moment condition, guarantees a central limit theorem for sample means and quantiles. In addition, it ensures the consistency of various methods for estimating the variance in the asymptotic normal distribution....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2015

ISSN: 0024-3795

DOI: 10.1016/j.laa.2013.12.013