Global asymptotic stability beyond 3/2 type stability for a logistic equation with piecewise constant arguments

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the global asymptotic stability for a rational recursive sequence

the main objective of this paper is to study the boundedness character, the periodicity character, the convergenceand the global stability of the positive solutions of the nonlinear rational difference equation/ , n 0,1,2,....0 01      kii n ikin i n i x  x b  xwhere the coefficients i i b , ,  together with the initial conditions ,.... , , 1 0 x x x k  are arbitrary...

متن کامل

Boundedness and asymptotic stability for delayed equations of logistic type

For a scalar Lotka{Volterra-type delay equation _x(t) = b(t)x(t)[1¡L(xt)], where L : C ([¡r; 0];R) ! R is a bounded linear operator and b a positive continuous function, su± cient conditions are established for the boundedness of positive solutions and for the global stability of the positive equilibrium, when it exists. Special attention is given to the global behaviour of solutions for the ca...

متن کامل

Stability of numerical solution for partial differential equations with piecewise constant arguments

In this paper, the numerical stability of a partial differential equation with piecewise constant arguments is considered. Firstly, the θ -methods are applied to approximate the original equation. Secondly, the numerical asymptotic stability conditions are given when the mesh ratio and the corresponding parameter satisfy certain conditions. Thirdly, the conditions under which the numerical stab...

متن کامل

Permanence and global asymptotic stability of a delayed predator-prey model with Hassell-Varley type functional response

Here, a predator-prey model with Hassell-Varley type functional responses is studied. Some sufficient conditions are obtained for the permanence and global asymptotic stability of the system by using comparison theorem and constructing a suitable Lyapunov functional. Moreover, an example is illustrated to verify the results by simulation.

متن کامل

Global asymptotic stability of a higher order rational difference equation

In this note, we consider the following rational difference equation: xn+1 = f (xn−r1 , . . . , xn−rk )g(xn−m1 , . . . , xn−ml )+ 1 f (xn−r1 , . . . , xn−rk )+ g(xn−m1 , . . . , xn−ml ) , n= 0,1, . . . , where f ∈ C((0,+∞)k, (0,+∞)) and g ∈ C((0,+∞)l, (0,+∞)) with k, l ∈ {1,2, . . .}, 0 r1 < · · ·< rk and 0 m1 < · · ·<ml , and the initial values are positive real numbers. We give sufficient con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications

سال: 2010

ISSN: 0362-546X

DOI: 10.1016/j.na.2010.06.081