Global bifurcation and multiple results for Sturm–Liouville problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Multiple global bifurcation branches for nonlinear Picard problems

In this paper we prove the global bifurcation theorem for the nonlinear Picard problem. The right-hand side function φ is a Caratheodory map, not differentiable at zero, but behaving in the neighbourhood of zero as specified in details below. We prove that in some interval [a, b] ⊂ R the Leray-Schauder degree changes, hence there exists the global bifurcation branch. Later, by means of some app...

متن کامل

Global Compactness Results for Nonlocal Problems

We obtain a Struwe type global compactness result for a class of nonlinear nonlocal problems involving the fractional p−Laplacian operator and nonlinearities at critical growth.

متن کامل

GLOBAL BIFURCATION PROBLEMS ASSOCIATED WITH k-HESSIAN OPERATORS

In this paper we study global bifurcation phenomena for a class of nonlinear elliptic equations governed by the h-Hessian operator. The bifurcation phenomena considered provide new methods for establishing existence results concerning fully nonlinear elliptic equations. Applications to the theory of critical exponents and the geometry of k-convex functions are considered. In addition, a related...

متن کامل

Global Bifurcation in Generic Systems of Nonlinear Sturm-liouville Problems

We consider the system of coupled nonlinear Sturm-Liouville boundary value problems L1u := −(p1u′)′ + q1u = μu + uf(·, u, v), in (0, 1), a10u(0) + b10u′(0) = 0, a11u(1) + b11u′(1) = 0, L2v := −(p2v′)′ + q2v = νv + vg(·, u, v), in (0, 1), a20v(0) + b20v′(0) = 0, a21v(1) + b21v′(1) = 0, where μ, ν are real spectral parameters. It will be shown that if the functions f and g are ‘generic’ then for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2011

ISSN: 0377-0427

DOI: 10.1016/j.cam.2010.10.014