Global existence of weak solutions to a three-dimensional fractional model in magneto-viscoelastic interactions
نویسندگان
چکیده
منابع مشابه
Existence of at least three weak solutions for a quasilinear elliptic system
In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...
متن کاملExistence of three solutions for a class of fractional boundary value systems
In this paper, under appropriate oscillating behaviours of the nonlinear term, we prove some multiplicity results for a class of nonlinear fractional equations. These problems have a variational structure and we find three solutions for them by exploiting an abstract result for smooth functionals defined on a reflexive Banach space. To make the nonlinear methods work, some careful analysis of t...
متن کاملGlobal existence of weak solutions to some micro - macro models
We prove global existence of weak solutions for the co-rotational FENE dumbbell model and the Doi model also called the Rod model. The proof is based on propagation of compactness, namely if we take a sequence of weak solutions which converges weakly and such that the initial data converges strongly then the weak limit is also a solution. To cite this article: A. Name1, A. Name2, C. R. Acad. Sc...
متن کاملGlobal existence of classical solutions to the Vlasov-Poisson system in a three dimensional, cosmological setting
The initial value problem for the Vlasov-Poisson system is by now well understood in the case of an isolated system where, by definition, the distribution function of the particles as well as the gravitational potential vanish at spatial infinity. Here we start with homogeneous solutions, which have a spatially constant, non-zero mass density and which describe the mass distribution in a Newton...
متن کاملMagneto-micropolar Fluid Motion: Global Existence of Strong Solutions
Here, u(t,x) ∈ R3 denotes the velocity of the fluid at a point x ∈ and time t ∈ [0,T ]; w(t,x) ∈ R3, b(t,x) ∈ R3 and p(t,x) ∈ R denote, respectively, the micro-rotational velocity, the magnetic field and the hydrostatic pressure; the constants μ,χ,α,β,γ,j , and ν are positive numbers associated to properties of the material; f (t,x), g(t,x) ∈ R3 are given external fields. We assume that on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2017
ISSN: 1687-2770
DOI: 10.1186/s13661-017-0852-3