Global well-posedness of incompressible flow in porous media with critical diffusion in Besov spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global well-posedness of incompressible flow in porous media with critical diffusion in Besov spaces

In this paper we study the model of heat transfer in a porous medium with a critical diffusion. We obtain global existence and uniqueness of solutions to the equations of heat transfer of incompressible fluid in Besov spaces Ḃ 3/p p,1 (R ) with 1 ≤ p ≤ ∞ by the method of modulus of continuity and Fourier localization technique. AMS Subject Classification 2000: 76S05, 76D03

متن کامل

Global well-posedness of the critical Burgers equation in critical Besov spaces

We make use of the method of modulus of continuity [7] and Fourier localization technique [1] to prove the global well-posedness of the critical Burgers equation ∂tu + u∂xu + Λu = 0 in critical Besov spaces Ḃ 1 p p,1(R) with p ∈ [1,∞), where Λ = √ −△. 2000 Mathematics Subject Classification: 35K55, 35Q53

متن کامل

Incompressible Flow in Porous Media with Fractional Diffusion

In this paper we study the heat transfer with a general fractional diffusion term of an incompressible fluid in a porous medium governed by Darcy’s law. We show formation of singularities with infinite energy and for finite energy we obtain existence and uniqueness results of strong solutions for the sub-critical and critical cases. We prove global existence of weak solutions for different case...

متن کامل

Global Well-posedness for the 2d Quasi-geostrophic Equation in a Critical Besov Space

We show that the 2D quasi-geostrophic equation has global and unique strong solution when the (large) data belongs in the critical scale invariant space Ḃ2−2α 2,∞ ∩ L2/(2α−1).

متن کامل

Well-posedness in critical spaces for barotropic viscous fluids

This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N ≥ 2. We address the question of well-posedness for large data having critical Besov regularity. Our result improve the analysis of R. Danchin in [13], by the fact that we choose initial density more general in B N p p,1 with 1 ≤ p < +∞. Our result relies on a new a priori estimate for the velocity, whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2009

ISSN: 0022-0396

DOI: 10.1016/j.jde.2009.01.022