GPU facilitated unsupervised visual feature acquisition
نویسندگان
چکیده
منابع مشابه
Online unsupervised feature learning for visual tracking
Feature encoding with respect to an over-complete dictionary learned by unsupervised methods, followed by spatial pyramid pooling, and linear classification, has exhibited powerful strength in various vision applications. Here we propose to use the feature learning pipeline for visual tracking. Tracking is implemented using tracking-bydetection and the resulted framework is very simple yet effe...
متن کاملUnsupervised Learning of Visual Feature Hierarchies
We propose an unsupervised, probabilistic method for learning visual feature hierarchies. Starting from local, low-level features computed at interest point locations, the method combines these primitives into high-level abstractions. Our appearance-based learning method uses local statistical analysis between features and Expectation-Maximization to identify and code spatial correlations. Spat...
متن کاملUnsupervised Feature Learning for Visual Sign Language Identification
Prior research on language identification focused primarily on text and speech. In this paper, we focus on the visual modality and present a method for identifying sign languages solely from short video samples. The method is trained on unlabelled video data (unsupervised feature learning) and using these features, it is trained to discriminate between six sign languages (supervised learning). ...
متن کاملAdaptive Unsupervised Multi-view Feature Selection for Visual Concept Recognition
To reveal and leverage the correlated and complemental information between different views, a great amount of multi-view learning algorithms have been proposed in recent years. However, unsupervised feature selection in multiview learning is still a challenge due to lack of data labels that could be utilized to select the discriminative features. Moreover, most of the traditional feature select...
متن کاملUnsupervised language acquisition
Children are exposed to speech and other environmental evidence, from which they learn language. How do they do this? More specifically, how do children map from complex, physical signals to grammars that enable them to generate and interpret new utterances from their language? This thesis presents a computational theory of unsupervised language acquisition. By computational we mean that the th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Neuroscience
سال: 2012
ISSN: 1471-2202
DOI: 10.1186/1471-2202-13-s1-p87