Gradient regularity for nonlinear parabolic equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Counterexample to C Regularity for Parabolic Fully Nonlinear Equations

We address the self-similar solvability of a singular parabolic problem and show that solutions to parabolic fully nonlinear equations are not expected to be C.

متن کامل

On the Regularity Theory of Fully Nonlinear Parabolic Equations

Recently M. Crandall and P. L. Lions [3] developed a very successful method for proving the existence of solutions of nonlinear second-order partial differential equations. Their method, called the theory of viscosity solutions, also applies to fully nonlinear equations (in which even the second order derivatives can enter in nonlinear fashion). Solutions produced by the viscosity method are gu...

متن کامل

Regularity Theory for Parabolic Nonlinear Integral Operators

Received by the editors March 8, 2010 and, in revised form, August 2, 2010, October 26, 2010, and December 17, 2010. 2010 Mathematics Subject Classification. Primary 35B65, 45G05, 47G10.

متن کامل

A Strong Regularity Result for Parabolic Equations

We consider a parabolic equation with a drift term u+b∇u−ut = 0. Under the condition divb = 0, we prove that solutions possess dramatically better regularity than those provided by standard theory. For example, we prove continuity of solutions when not even boundedness is expected.

متن کامل

Local Regularity Results for Some Parabolic Equations

In this paper we prove the local L s regularity (where s depends on the summability of the data) for local " unbounded " weak solutions of a class of nonlinear parabolic equations including the p-Laplacian equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE

سال: 2013

ISSN: 2036-2145,0391-173X

DOI: 10.2422/2036-2145.201103_006