Graph Isomorphism for $$(H_1,H_2)$$-Free Graphs: An Almost Complete Dichotomy
نویسندگان
چکیده
منابع مشابه
Graph Isomorphism is PSPACE-complete
Combining the the results of A.R. Meyer and L.J. Stockmeyer " The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space " , and K.S. Booth " Iso-morphism testing for graphs, semigroups, and finite automata are polynomiamlly equivalent problems " shows that graph isomorphism is PSPACE-complete. The equivalence problem for regular expressions was shown to be PSPACE-...
متن کاملGraph Isomorphism Completeness for Trapezoid Graphs
The complexity of the graph isomorphism problem for trapezoid graphs has been open over a decade. This paper shows that the problem is GI-complete. More precisely, we show that the graph isomorphism problem is GI-complete for comparability graphs of partially ordered sets with interval dimension 2 and height 3. In contrast, the problem is known to be solvable in polynomial time for comparabilit...
متن کاملGraph Isomorphism for Unit Square Graphs
In the past decades for more and more graph classes the Graph Isomorphism Problem was shown to be solvable in polynomial time. An interesting family of graph classes arises from intersection graphs of geometric objects. In this work we show that the Graph Isomorphism Problem for unit square graphs, intersection graphs of axis-parallel unit squares in the plane, can be solved in polynomial time....
متن کاملBenchmark Graphs for Practical Graph Isomorphism
The state-of-the-art solvers for the graph isomorphism problem can readily solve generic instances with tens of thousands of vertices. Indeed, experiments show that on inputs without particular combinatorial structure the algorithms scale almost linearly. In fact, it is non-trivial to create challenging instances for such solvers and the number of difficult benchmark graphs available is quite l...
متن کاملGraph Isomorphism for K_{3, 3}-free and K_5-free graphs is in Log-space
Graph isomorphism is an important and widely studied computational problem with a yet unsettled complexity. However, the exact complexity is known for isomorphism of various classes of graphs. Recently, [8] proved that planar isomorphism is complete for log-space. We extend this result further to the classes of graphs which exclude K3,3 or K5 as a minor, and give a log-space algorithm. Our algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithmica
سال: 2020
ISSN: 0178-4617,1432-0541
DOI: 10.1007/s00453-020-00747-x