Graph machine learning for design of high‐octane fuels
نویسندگان
چکیده
منابع مشابه
investigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
Extreme Learning Machine for Graph Signal Processing
In this article, we improve extreme learning machines for regression tasks using a graph signal processing based regularization. We assume that the target signal for prediction or regression is a graph signal. With this assumption, we use the regularization to enforce that the output of an extreme learning machine is smooth over a given graph. Simulation results with real data confirm that such...
متن کاملGraph-based Learning for Statistical Machine Translation
Current phrase-based statistical machine translation systems process each test sentence in isolation and do not enforce global consistency constraints, even though the test data is often internally consistent with respect to topic or style. We propose a new consistency model for machine translation in the form of a graph-based semi-supervised learning algorithm that exploits similarities betwee...
متن کاملTux2: Distributed Graph Computation for Machine Learning
TUX2 is a new distributed graph engine that bridges graph computation and distributed machine learning. TUX2 inherits the benefits of an elegant graph computation model, efficient graph layout, and balanced parallelism to scale to billion-edge graphs; we extend and optimize it for distributed machine learning to support heterogeneity, a Stale Synchronous Parallel model, and a new MEGA (Mini-bat...
متن کاملMachine Learning for Drug Design
A common step in drug design is the formation of a quantitative structure-activity relationship (QSAR) to model an exploratory series of compounds. A QSAR generalizes how the structure of a compound relates to its biological activity. There is growing interest in the application of machine learning techniques in QSAR modeling research. However, no single technique can claim to be uniformly supe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Aiche Journal
سال: 2022
ISSN: ['1547-5905', '0001-1541']
DOI: https://doi.org/10.1002/aic.17971