Graph Sampling for Covariance Estimation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme Compressive Sampling for Covariance Estimation

We consider the problem of estimating the covariance of a collection of vectors given extremely compressed measurements of each vector. We propose and study an estimator based on back-projections of these compressive samples. We show, via a distribution-free analysis, that by observing just a single compressive measurement of each vector one can consistently estimate the covariance matrix, in b...

متن کامل

Active covariance estimation by random sub-sampling of variables

We study covariance matrix estimation for the case of partially observed random vectors, where different samples contain different subsets of vector coordinates. Each observation is the product of the variable of interest with a $0-1$ Bernoulli random variable. We analyze an unbiased covariance estimator under this model, and derive an error bound that reveals relations between the sub-sampling...

متن کامل

Covariance-Adaptive Slice Sampling

We describe two slice sampling methods for taking multivariate steps using the crumb framework. These methods use the gradients at rejected proposals to adapt to the local curvature of the log-density surface, a technique that can produce much better proposals when parameters are highly correlated. We evaluate our methods on four distributions and compare their performance to that of a non-adap...

متن کامل

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

WISHART DISTRIBUTIONS FOR COVARIANCE GRAPH MODELS By

Gaussian covariance graph models encode marginal independence among the components of a multivariate random vector by means of a graph G. These models are distinctly different from the traditional concentration graph models (often also referred to as Gaus-sian graphical models or covariance selection models), as the zeroes in the parameter are now reflected in the covariance matrix Σ, as compar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal and Information Processing over Networks

سال: 2017

ISSN: 2373-776X,2373-7778

DOI: 10.1109/tsipn.2017.2731161