Graphs whose mixed metric dimension is equal to their order
نویسندگان
چکیده
The mixed metric dimension $$\textrm{mdim}(G)$$ of a graph G is the cardinality smallest set vertices that (metrically) resolves each pair elements from $$V(G)\cup E(G)$$ . We say max-mdim if $$\textrm{mdim}(G) = n(G)$$ It proved with $$n(G)\ge 7$$ contains vertex degree at least 5. Using strong product graphs and amalgamations, large families are constructed. one universal determined. cut bounded above block computed.
منابع مشابه
The metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملThe Metric Dimension of Circulant Graphs and Their Cartesian Products
Let G = (V,E) be a connected graph (or hypergraph) and let d(x, y) denote the distance between vertices x, y ∈ V (G). A subset W ⊆ V (G) is called a resolving set for G if for every pair of distinct vertices x, y ∈ V (G), there is w ∈ W such that d(x,w) 6= d(y, w). The minimum cardinality of a resolving set for G is called the metric dimension of G, denoted by β(G). The circulant graph Cn(1, 2,...
متن کاملthe metric dimension and girth of graphs
a set $wsubseteq v(g)$ is called a resolving set for $g$, if for each two distinct vertices $u,vin v(g)$ there exists $win w$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. the minimum cardinality of a resolving set for $g$ is called the metric dimension of $g$, and denoted by $dim(g)$. in this paper, it is proved that in a connected graph $...
متن کاملMetric Dimension for Random Graphs
The metric dimension of a graph G is the minimum number of vertices in a subset S of the vertex set of G such that all other vertices are uniquely determined by their distances to the vertices in S. In this paper we investigate the metric dimension of the random graph G(n, p) for a wide range of probabilities p = p(n).
متن کاملMetric Dimension for Gabriel Unit Disk Graphs Is NP-Complete
We show that finding a minimal number of landmark nodes for a unique virtual addressing by hop-distances in wireless ad-hoc sensor networks is NPcomplete even if the networks are unit disk graphs that contain only Gabriel edges. This problem is equivalent to Metric Dimension for Gabriel unit disk graphs. The Gabriel edges of a unit disc graph induce a planar O( √ n) distance and an optimal ener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational & Applied Mathematics
سال: 2023
ISSN: ['1807-0302', '2238-3603']
DOI: https://doi.org/10.1007/s40314-023-02351-5