Graphs with eigenvalues at least −2

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on graphs with least eigenvalue at least -2

A new proof concerning the determinant of the adjacency matrix of the line graph of a tree is presented and an invariant for line graphs, introduced by Cvetković and Lepović, with least eigenvalue at least −2 is revisited and given a new equivalent definition [D. Cvetković and M. Lepović. Cospectral graphs with least eigenvalue at least −2. Publ. Inst. Math., Nouv. Sér., 78(92):51–63, 2005.]. E...

متن کامل

Ordering Unicyclic Graphs in Terms of Their Smaller Least Eigenvalues

Let G be a simple graph with n vertices, and let A be the 0, 1 -adjacency matrix of G. We call det λI −A the characteristic polynomial of G, denoted by P G; λ , or abbreviated P G . Since A is symmetric, its eigenvalues λ1 G , λ2 G , . . . , λn G are real, and we assume that λ1 G ≥ λ2 G ≥ · · · ≥ λn G . We call λn G the least eigenvalue of G. Up to now, some good results on the least eigenvalue...

متن کامل

Small graphs with exactly two non-negative eigenvalues

Let $G$ be a graph with eigenvalues $lambda_1(G)geqcdotsgeqlambda_n(G)$. In this paper we find all simple graphs $G$ such that $G$ has at most twelve vertices and $G$ has exactly two non-negative eigenvalues. In other words we find all graphs $G$ on $n$ vertices such that $nleq12$ and $lambda_1(G)geq0$, $lambda_2(G)geq0$ and $lambda_3(G)0$, $lambda_2(G)>0$ and $lambda_3(G)

متن کامل

On the least signless Laplacian eigenvalues of some graphs

For a graph, the least signless Laplacian eigenvalue is the least eigenvalue of its signless Laplacian matrix. This paper investigates how the least signless Laplacian eigenvalue of a graph changes under some perturbations, and minimizes the least signless Laplacian eigenvalue among all the nonbipartite graphs with given matching number and edge cover number, respectively.

متن کامل

On the distance eigenvalues of Cayley graphs

In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1982

ISSN: 0024-3795

DOI: 10.1016/0024-3795(82)90023-4