Group key management based on semigroup actions
نویسندگان
چکیده
منابع مشابه
Group key management based on semigroup actions
In this work we provide a suite of protocols for group key management based on general semigroup actions. Construction of the key is made in a distributed and collaborative way. We provide security proofs against passive attacks and suitable examples that may enhance both the security level and communication overheads of previous existing protocols.
متن کاملPublic key cryptography based on semigroup actions
A generalization of the original Diffie-Hellman key exchange in (Z/pZ) found a new depth when Miller [27] and Koblitz [16] suggested that such a protocol could be used with the group over an elliptic curve. In this paper, we propose a further vast generalization where abelian semigroups act on finite sets. We define a Diffie-Hellman key exchange in this setting and we illustrate how to build in...
متن کاملPublic Key Cryptography based on Semigroup Actions
A generalization of the original Diffie-Hellman key exchange in (Z/pZ) found a new depth when Miller [27] and Koblitz [16] suggested that such a protocol could be used with the group over an elliptic curve. In this paper, we propose a further vast generalization where abelian semigroups act on finite sets. We define a Diffie-Hellman key exchange in this setting and we illustrate how to build in...
متن کامل2 00 7 Public Key Cryptography based on Semigroup Actions ∗
A generalization of the original Diffie-Hellman key exchange in (Z/pZ) found a new depth when Miller [27] and Koblitz [16] suggested that such a protocol could be used with the group over an elliptic curve. In this paper, we propose a further vast generalization where abelian semigroups act on finite sets. We define a Diffie-Hellman key exchange in this setting and we illustrate how to build in...
متن کاملKey Cryptography based on Semigroup Actions ∗ Gérard Maze
A generalization of the original Diffie-Hellman key exchange in (Z/pZ) found a new depth when Miller [27] and Koblitz [16] suggested that such a protocol could be used with the group over an elliptic curve. In this paper, we propose a further vast generalization where abelian semigroups act on finite sets. We define a Diffie-Hellman key exchange in this setting and we illustrate how to build in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra and Its Applications
سال: 2016
ISSN: 0219-4988,1793-6829
DOI: 10.1142/s0219498817501481