Groups generated by 3-state automata over a 2-letter alphabet, I
نویسندگان
چکیده
منابع مشابه
Composing short 3-compressing words on a 2 letter alphabet
A finite deterministic (semi)automaton A = (Q,Σ, δ) is kcompressible if there is some word w ∈ Σ such that the image of the state set Q under the natural action of w is reduced by at least k states. Such word, if it exists, is called a k-compressing word for A. A word is k-collapsing if it is k-compressing for each k-compressible automaton. We compute a set Γ of short words such that all 3-comp...
متن کاملUnambiguous Finite Automata over a Unary Alphabet
Nondeterministic finite automata (NFA) with at most one accepting computation on every input string are known as unambiguous finite automata (UFA). This paper considers UFAs over a one-letter alphabet, and determines the exact number of states in DFAs needed to represent unary languages recognized by n-state UFAs in terms of a new number-theoretic function g̃. The growth rate of g̃(n), and theref...
متن کاملGroups and Semigroups Generated by Automata
In this dissertation we classify the metabelian groups arising from a restricted class of invertible synchronous automata over a binary alphabet. We give faithful, self-similar actions of Heisenberg groups and upper triangular matrix groups. We introduce a new class of semigroups given by a restricted class of asynchronous automata. We call these semigroups " expanding automaton semigroups ". W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The São Paulo Journal of Mathematical Sciences
سال: 2007
ISSN: 2316-9028,1982-6907
DOI: 10.11606/issn.2316-9028.v1i1p