Growth of Forecast Errors from Covariances Modeled by 4DVAR and ETKF Methods
نویسندگان
چکیده
منابع مشابه
Generalized Forecast Errors, A Change of Measure, and Forecast Optimality
This paper establishes properties of optimal forecasts under general loss functions, extending existing results obtained under speci c functional forms and data generating processes. We propose a new method that changes the probability measure under which the well-known properties of optimal forecasts under mean squared error loss can be recovered. We illustrate the proposed methods through an ...
متن کاملsynthesis of sulfides from alcohols and thiols in solvent-freeconditions and deoxygenation of sulfoxides
کاتالیست یک سنتز جدید برای تیواترها توصیف شده است. واکنش الکل ها با آریل، هتروآریل و آلکیل تیو ل ها درحضور 1،3،5- تری آزو- 2،4،6- تری فسفرین-2،2،4،4،6،6 هگزاکلراید ((tapc به عنوان یک کاتالیست موُثر، بازده های خوب تا عالی از تیواترها را حاصل می کند. علاوه براین، واکنش تحت شرایط بدون فلز و بدون حلال پیش می رود، بنابراین یک مکمل جالب برای روش های شناخته شده سنتز تیواترها ارائه می دهد. یک مکانیسم ا...
15 صفحه اولEvaluating the Role of the EOF Analysis in 4DEnVar Methods
The four-dimensional variational data assimilation (4DVar) method is one of the most popular techniques used in numerical weather prediction. Nevertheless, the needs of the adjoint model and the linearization of the forecast model largely limit the wider applications of 4DVar. 4D ensemble-variational data assimilation methods (4DEnVars) exploit the strengths of the Ensemble Kalman Filter and 4D...
متن کاملForecast covariances in the linear multiregression dynamic model
Abstract The linear multiregression dynamic model (LMDM) is a Bayesian dynamic model which preserves any conditional independence and causal structure across a multivariate time series. The conditional independence structure is used to model the multivariate series by separate (conditional) univariate dynamic linear models, where each series has contemporaneous variables as regressors in its mo...
متن کاملForecast Errors in Service Systems
We investigate the presence and impact of forecast errors in the arrival rate of customers to a service system. Analysis of a large dataset shows that forecast errors can be large relative to the fluctuations naturally expected in a Poisson process. We show that ignoring forecast errors typically leads to overestimates of performance and that forecast errors of the magnitude seen in our dataset...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Weather Review
سال: 2011
ISSN: 0027-0644,1520-0493
DOI: 10.1175/2010mwr3182.1