Hadamard matrices of order ≡8 (mod 16) with maximal excess

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hadamard matrices of order =8 (mod 16) with maximal excess

Kounias and Farmakis, in 'On the excess of Hadamard matrices', Discrete Math. 68 (1988) 59-69, showed that the maximal excess (or sum of the elements) of an Hadamard matrix of order h, o(h) for h = 4m(m -1) is given by o(4m(m 1))≤4(m 1)2(2m + 1). Kharaghani in 'An infinite class of Hadamard matrices of maximal excess' (to appear) showed this maximal excess can be attained if m is the order of a...

متن کامل

Existence of SBIBD(4k2, 2k2±k, k2±k) and Hadamard matrices with maximal excess

It is shown that SBIED(4k 2 , 2Jc 2 ± k, P ± k) and Hadamard matrices with maximal excess exist for qs,q {q:q 1 (mod 4) is a prime power}, + 1, g the length of a Golay sequence}. There a proper n dimensional Hadamard matrix of order (4k2)n. Regular symmetric Hadamard matrices with constant diagonal are obtained for orders 4k2 whenever complete regular 4-sets of regular matrices of order k 2 exist.

متن کامل

The excess of complex Hadamard matrices

A complex Hadamard matrix, C, of order n has elements 1, -1, i, i and satisfies CC* = nIn where C* denotes the conjugate transpose of C. Let C = [cij] be a complex Hadamard matrix of order n. S(C) = ∑ cij is called the sum of C. 0(C) = │S(C)│ is called the excess of C. We study the excess of complex Hadamard matrices. As an application many real Hadamard matrices of large and maximal excess are...

متن کامل

Hadamard matrices of order 32

Two Hadamard matrices are considered equivalent if one is obtained from the other by a sequence of operations involving row or column permutations or negations. We complete the classification of Hadamard matrices of order 32. It turns out that there are exactly 13710027 such matrices up to equivalence. AMS Subject Classification: 05B20, 05B05, 05B30.

متن کامل

Construction of some Hadamard matrices with maximum excess

o(n) = max a(H) for all H-matrices of order n (1) An equivalent notion is the weight w(H) which is the number of l’s in H, then a(H) = 2w(H) n2 and u(n) = 2w(n) n2, see [4,12,15]. H-matrices with maximum excess are known for the following values of n: n 6 52 (n = 0 mod 4), n = 64, 80, 84, 100, 124, 144, 172, 196, 256, 324, 400, and IZ = (4m)*, where 4m is the order of an H-matrix [2,4-5,10-12,1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1991

ISSN: 0012-365X

DOI: 10.1016/0012-365x(91)90278-a