Hamiltonian properties and the bipartite independence number

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian properties and the bipartite independence number

By using the notion of compatibility of subgraphs with a perfect matching developed for digraphs in [1], we show that if, in a balanced bipartite graph G of minimum degree 6, the maximum cardinality ebip of a balanced independent subset satisfies ~bip ~< 26-4, then G is hamiltonian-biconnected, and if Ctbip ~< 26-2, G contains a hamiltonian path. Moreover, we give some properties of balanced bi...

متن کامل

A balanced independence number condition for a balanced bipartite graph to be Hamiltonian

Let G be a 2-connected balanced bipartite graph with partite sets X1 and X2. We denote α∗ BIP (G) be the maximum cardinality of an independent set A1∪A2 of G such that A1 ⊂ X1, A2 ⊂ X2 and ∣∣|A1| − |A2|∣∣ ≤ 1. In this paper, we prove that if α∗ BIP (G) ≤ 2δ(G)− 2, then G is Hamiltonian. This condition is best possible, and this implies several known results, for example, in [1, 6, 7, 11]. Also ...

متن کامل

A note on the independence number in bipartite graphs

The independence number of a graph G, denoted by α(G), is the maximum cardinality of an independent set of vertices in G. The transversal number of G is the minimum cardinality of a set of vertices that covers all the edges of G. If G is a bipartite graph of order n, then it is easy to see that n 2 ≤ α(G) ≤ n − 1. If G has no edges, then α(G) = n = n(G). Volkmann [Australas. J. Combin. 41 (2008...

متن کامل

2-domination in Bipartite Graphs with Odd Independence Number

For a positive integer k, a set of vertices S in a graph G is said to be a k-dominating set if each vertex x in V (G) − S has at least k neighbors in S. The cardinality of a smallest k-dominating set of G is called the k-domination number of G and is denoted by γk(G). The independence number of a graph G is denoted by α(G). In [Australas. J. Combin. 40 (2008), 265–268], Fujisawa, Hansberg, Kubo...

متن کامل

Hamiltonian paths and cycles, number of arcs and independence number in digraphs

Manoussakis, Y. and D. Amar, Hamiltonian paths and cycles, number of arcs and independence number in digraphs, Discrete Mathematics 105 (1992) 157-172. We let D denote a digraph with n vertices, independence number at least (Y and half-degrees at least k. We give (i) a function f(n, a) (respectively f (n, k, a)) such that any digraph with at least f(n, a) (respectively f(n, k, a)) arcs is Hamil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1996

ISSN: 0012-365X

DOI: 10.1016/0012-365x(95)00028-u