Harmonic analysis and theta-functions
نویسندگان
چکیده
منابع مشابه
Harmonic Analysis of Functions
Sato’s hyperfunctions are known to be represented as the boundary values of harmonic functions as well as those of holomorphic functions. The author obtains a bijective Poisson mapping P : S∗′(Rn) −→ S∗′(S∗Rn) ∩H(S∗Rn) where H(S∗Rn) is a kind of Hardy subspace of B(S∗Rn). Moreover, the author has an isomorphism between Sobolev spaces P : W (R) −→ W s+(n−1)/4(S∗Rn) ∩H(S∗Rn). There are some simil...
متن کاملHarmonic theta series and equidistribution
is a holomorphic modular form of weight 4 for the subgroup [1] Γθ, from the fact that there are no weight 4 cuspforms for Γθ, and from explicit computation of the Fourier coefficients of the two types of weight 4 Eisenstein series for Γθ. Toward a less frivolous result, recall that the irreducibility of spaces Hd of homogeneous, degree d harmonic polynomials f on R as O(n)-spaces gives Hecke’s ...
متن کاملTheta functions on covers of symplectic groups
We study the automorphic theta representation $Theta_{2n}^{(r)}$ on the $r$-fold cover of the symplectic group $Sp_{2n}$. This representation is obtained from the residues of Eisenstein series on this group. If $r$ is odd, $nle r
متن کاملTheta Functions and Szegö Kernels
We study relations between two fundamental constructions associated to vector bundles on a smooth complex projective curve: the theta function (a section of a line bundle on the moduli space of vector bundles) and the Szegö kernel (a section of a vector bundle on the square of the curve). Two types of relations are demonstrated. First, we establish a higher–rank version of the prime form, descr...
متن کاملA lower estimate of harmonic functions
We shall give a lower estimate of harmonic functions of order greater than one in a half space, which generalize the result obtained by B. Ya. Levin in a half plane.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica
سال: 1968
ISSN: 0001-5962
DOI: 10.1007/bf02394610