Harmonic close-to-convex functions and minimal surfaces
نویسندگان
چکیده
منابع مشابه
Harmonic Close-to-convex Mappings
Sufficient coefficient conditions for complex functions to be close-to-convex harmonic or convex harmonic are given. Construction of close-to-convex harmonic functions is also studied by looking at transforms of convex analytic functions. Finally, a convolution property for harmonic functions is discussed. Harmonic, Convex, Close-to-Convex, Univalent.
متن کاملSome Properties of Certain Subclasses of Close-to-Convex and Quasi-convex Functions with Respect to 2k-Symmetric Conjugate Points
متن کامل
Minimal Surfaces and Harmonic Functions in the Heisenberg Group
We study the blow-up of H-perimeter minimizing sets in the Heisenberg group H, n ≥ 2. We show that the Lipschitz approximations rescaled by the square root of excess converge to a limit function. Assuming a stronger notion of local minimality, we prove that this limit function is harmonic for the Kohn Laplacian in a lower dimensional Heisenberg group.
متن کاملAn Investigation on Minimal Surfaces of Multivalent Harmonic Functions
The projection on the base plane of a regular minimal surface S in R with isothermal parameters defines a complex-valued univalent harmonic function f = h(z) + g(z). The aim of this paper is to obtain the distortion inequalities for the Weierstrass-Enneper parameters of the minimal surface for the harmonic multivalent functions for which analytic part is an m-valent convex function. 2000 Mathem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Variables and Elliptic Equations
سال: 2013
ISSN: 1747-6933,1747-6941
DOI: 10.1080/17476933.2013.800050