Hartogs figure and symplectic non-squeezing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic Non-squeezing of the Kdv Flow

We prove two finite dimensional approximation results and a symplectic non-squeezing property for the Korteweg-de Vries (KdV) flow on the circle T. The nonsqueezing result relies on the aforementioned approximations and the finite-dimensional nonsqueezing theorem of Gromov [13]. Unlike the work of Kuksin [21] which initiated the investigation of non-squeezing results for infinite dimensional Ha...

متن کامل

Symplectic Non-Squeezing Theorems, Quantization of Integrable Systems, and Quantum Uncertainty

The ground energy level of an oscillator cannot be zero because of Heisenberg’s uncertainty principle. We use methods from symplectic topology (Gromov’s non-squeezing theorem, and the existence of symplectic capacities) to analyze and extend this heuristic observation to Liouville-integrable systems, and to propose a topological quantization scheme for such systems, thus extending previous resu...

متن کامل

The Symplectic Floer Homology of the Figure Eight Knot

In this paper, we compute the symplectic Floer homology of the figure eight knot. This provides first nontrivial knot with trivial symplectic Floer homology.

متن کامل

On Symplectic and Non–symplectic Automorphisms of K3 Surfaces

In this paper we investigate when the generic member of a family of complex K3 surfaces admitting a non–symplectic automorphism of finite order admits also a symplectic automorphism of the same order. We give a complete answer to this question if the order of the automorphism is a prime number and we provide several examples and partial results otherwise. Moreover we prove that, under certain c...

متن کامل

Hartogs Type Extension Theorems

Let ∆ ⊆ C be the open unit disc and let Σ ⊆ ∆×∆ be a compact set such that K = Σ ∪ (∂∆×∆) is a connected set. It is a classical result by Hartogs that if Σ is an analytic variety over ∆ with the boundary in ∂∆×∆, then every function holomorphic in a connected neighbourhood of K extends holomorphically to a neighbourhood of ∆ × ∆. It is proved that the same conclusion holds if Σ is a ‘continuous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2012

ISSN: 0019-2082

DOI: 10.1215/ijm/1380287469