Height functions on compact symmetric spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Poisson Structure on Compact Symmetric Spaces

We present some basic results on a natural Poisson structure on any compact symmetric space. The symplectic leaves of this structure are related to the orbits of the corresponding real semisimple group on the complex flag manifold.

متن کامل

Characterizing Continuous Functions on Compact Spaces

We consider the following problem: given a set X and a function T : X → X, does there exist a compact Hausdorff topology on X which makes T continuous? We characterize such functions in terms of their orbit structure. Given the generality of the problem, the characterization turns out to be surprisingly simple and elegant. Amongst other results, we also characterize homeomorphisms on compact me...

متن کامل

Functions on Symmetric Spaces and Oscillator Representation

In this paper, we study the L functions on U(2n)/O(2n) and Mp(n,R). We relate them using the oscillator representation. We first study some isometries between various L spaces using the compactification we defined in [6]. These isometries were first introduced by Betten-Ólafsson in [3] . We then give a description of the matrix coefficients of the oscillator representation ω in terms of algebra...

متن کامل

On the Funk Transform on Compact Symmetric Spaces

We prove that a function on an irreducible compact symmetric space M which is not a sphere is determined by its integrals over the shortest closed geodesics in M . We also prove a support theorem for the Funk transform on rank one symmetric spaces which are not spheres.

متن کامل

Vafa-witten Estimates for Compact Symmetric Spaces

We give an optimal upper bound for the first eigenvalue of the untwisted Dirac operator on a compact symmetric space G/H with rkG− rkH ≤ 1 with respect to arbitrary Riemannian metrics. We also prove a rigidity statement. Herzlich gave an optimal upper bound for the lowest eigenvalue of the Dirac operator on spheres with arbitrary Riemannian metrics in [9] using a method developed by Vafa and Wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte für Mathematik

سال: 2014

ISSN: 0026-9255,1436-5081

DOI: 10.1007/s00605-014-0696-1