Height zeta functions of twisted products
نویسندگان
چکیده
منابع مشابه
Height Zeta Functions of Twisted Products
We investigate analytic properties of height zeta functions of toric bundles over flag varieties.
متن کاملTwisted Zeta Functions of Quaternion Orders
Given an abelian Galois extension K/F of number fields, a quaternion algebra A over F that is ramified at all infinite primes, and a character χ of the Galois group of K over F , we consider the twist of the zeta function of A by the character χ. We show that such twisted zeta functions provide a factorization of the zeta function of A(K) = A ⊗F K. Also, the quotient of the zeta function for A(...
متن کاملHeight zeta functions of equivariant compactifications of semi-direct products of algebraic groups
We apply the theory of height zeta functions to study the asymptotic distribution of rational points of bounded height on projective equivariant compactifications of semi-direct products. Introduction Let X be a smooth projective variety over a number field F and L a very ample line bundle on X. An adelic metrization L = (L, ‖ · ‖) on L induces a height function HL : X(F )→ R>0, let N(X◦,L,B) :...
متن کاملON THE TWISTED q-ZETA FUNCTIONS AND q-BERNOULLI POLYNOMIALS
One purpose of this paper is to define the twisted q-Bernoulli numbers by using p-adic invariant integrals on Zp. Finally, we construct the twisted q-zeta function and q-L-series which interpolate the twisted q-Bernoulli numbers.
متن کاملHeight Zeta Functions of Equivariant Compactifications of the Heisenberg Group
— We study analytic properties of height zeta functions of equivariant compactifications of the Heisenberg group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 1997
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.1997.v4.n2.a8