Heisenberg type uncertainty principle for continuous shearlet transform

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heisenberg type uncertainty principle for continuous shearlet transform

We prove a Heisenberg type uncertainty principle for the continuous shearlet transform, and study two generalizations of it. Our work extends the shearlet theory. c ©2016 All rights reserved.

متن کامل

The Uncertainty Principle Associated with the Continuous Shearlet Transform

Finding optimal representations of signals in higher dimensions, in particular directional representations, is currently the subject of intensive research. Since it might be difficult to obtain directional information by means of wavelets, several new representation systems were proposed in the past, including ridgelets, curvelets and, more recently, shearlets. In this paper we study and visual...

متن کامل

Heisenberg Uncertainty Principle for the q-Bessel Fourier transform

In this paper we uses an I.I. Hirschman-W. Beckner entropy argument to give an uncertainty inequality for the q-Bessel Fourier transform: Fq,vf(x) = cq,v ∫ ∞ 0 f(t)jv(xt, q 2)t2v+1dqt, where jv(x, q) is the normalized Hahn-Exton q-Bessel function.

متن کامل

Heisenberg Uncertainty Inequality for Gabor Transform

We discuss the Heisenberg uncertainty inequality for groups of the form K Rn , K is a separable unimodular locally compact group of type I. This inequality is also proved for Gabor transform for several classes of groups of the form K Rn . Mathematics subject classification (2010): Primary 43A32; Secondary 43A30, 22D10, 22D30, 22E25.

متن کامل

An Infinite - Dimensional Heisenberg Uncertainty Principle

An analogue of the classical Heisenberg inequality is given for an infinite-dimensional space. The proof relies on a commutation relationship and integration by parts formula for Gaussian measure. We also discuss when the equality holds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2016

ISSN: 2008-1901

DOI: 10.22436/jnsa.009.03.06