Hellinger Distance-Based Parameter Tuning for .EPSILON.-Filter

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hellinger distance

In this lecture, we will introduce a new notion of distance between probability distributions called Hellinger distance. Using some of the nice properties of this distance, we will generalize the fooling set argument for deterministic protocols to the randomized setting. We will then use this to prove a Ω(n) lower bound for the communication complexity of Disjointness. We will also see how this...

متن کامل

Hellinger distance for fuzzy measures

Hellinger distance is a distance between two additive measures defined in terms of the RadonNikodym derivative of these two measures. This measure proposed in 1909 has been used in a large variety of contexts. In this paper we define an analogous measure for fuzzy measures. We discuss them for distorted probabilities and give two examples.

متن کامل

Efficient Hellinger distance estimates for semiparametric models

Minimum distance techniques have become increasingly important tools for solving statistical estimation and inference problems. In particular, the successful application of the Hellinger distance approach to fully parametric models is well known. The corresponding optimal estimators, known as minimum Hellinger distance estimators, achieve efficiency at the model density and simultaneously posse...

متن کامل

Efficient and Robust Parameter Tuning for Heuristic Algorithms

The main advantage of heuristic or metaheuristic algorithms compared to exact optimization methods is their ability in handling large-scale instances within a reasonable time, albeit at the expense of losing a guarantee for achieving the optimal solution. Therefore, metaheuristic techniques are appropriate choices for solving NP-hard problems to near optimality. Since the parameters of heuristi...

متن کامل

Class distribution estimation based on the Hellinger distance

Class distribution estimation (quantification) plays an important role in many practical classification problems. Firstly, it is important in order to adapt the classifier to the operational conditions when they differ from those assumed in learning. Additionally, there are some real domains where the quantification task is itself valuable due to the high variability of the class prior probabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEICE Transactions on Information and Systems

سال: 2010

ISSN: 0916-8532,1745-1361

DOI: 10.1587/transinf.e93.d.2647