Hermite Multiplier Sequences and Their Associated Operators
نویسندگان
چکیده
منابع مشابه
Maximal Operators Associated with Generalized Hermite Polynomial and Function Expansions
We study the weak and strong type boundedness of maximal heat–diffusion operators associated with the system of generalized Hermite polynomials and with two different systems of generalized Hermite functions. We also give a necessary background to define Sobolev spaces in this context.
متن کاملWavelets and Their Associated Operators
This article is devoted to the study of wavelets based on the theory of shift-invariant spaces. It consists of two, essentially disjoint, parts. In the rst part, the berization of the analysis operator of a shift-invariant system is discussed. That berization applies to wavelet systems via the notion of quasi-wavelet systems, and leads to the theory of wavelet frames. Highlights in this theory ...
متن کاملFunction spaces and multiplier operators
Let G denote a locally compact Hausdorff abelian group. Then a bounded linear operator T from L^2(G) into L^2(G) is a bounded multiplier operator if, under the Fourier transform on L^2(G ), for each function f in L^2(G), T(f) changes into a bounded function U times the Fourier transform of f. Then U is called the multiplier of T. An unbounded multiplier operator has a similar definition, but it...
متن کاملSubspace-diskcyclic sequences of linear operators
A sequence ${T_n}_{n=1}^{infty}$ of bounded linear operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...
متن کاملHERMITE OPERATOR AND SUBELLIPTIC OPERATORS IN Hn
In this note, we compute the fundamental solution for the Hermite operator with singularity at arbitrary point y ∈ R. We also apply this result to obtain the fundamental solution for the sub-Laplacian Lα = − ∑n j=1(X 2 j +X 2 j+n)− iαT on the Heisenberg group. In this note, we first derive the fundamental solution of the Hermite operator n ∑ j=1 ( λjx 2 j − ∂2 ∂xj ) in Rn, i.e., we are looking ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Constructive Approximation
سال: 2015
ISSN: 0176-4276,1432-0940
DOI: 10.1007/s00365-015-9277-3