High-dimensional neural feature design for layer-wise reduction of training cost
نویسندگان
چکیده
منابع مشابه
NDDR-CNN: Layer-wise Feature Fusing in Multi-Task CNN by Neural Discriminative Dimensionality Reduction
State-of-the-art Convolutional Neural Network (CNN) benefits much from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize multiple task-specific...
متن کاملHigh-Dimensional Feature Selection by Feature-Wise Non-Linear Lasso
The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this paper, we consider a feature-wise kernelized Lasso for capturing non-linear inp...
متن کاملHigh-Dimensional Feature Selection by Feature-Wise Kernelized Lasso
The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this letter, we consider a feature-wise kernelized Lasso for capturing nonlinear inp...
متن کاملLayer-wise training of deep generative models
When using deep, multi-layered architectures to build generative models of data, it is difficult to train all layers at once. We propose a layer-wise training procedure admitting a performance guarantee compared to the global optimum. It is based on an optimistic proxy of future performance, the best latent marginal. We interpret autoencoders in this setting as generative models, by showing tha...
متن کاملGreedy Layer-Wise Training of Deep Networks
Complexity theory of circuits strongly suggests that deep architectures can be much more efficient (sometimes exponentially) than shallow architectures, in terms of computational elements required to represent some functions. Deep multi-layer neural networks have many levels of non-linearities allowing them to compactly represent highly non-linear and highly-varying functions. However, until re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Advances in Signal Processing
سال: 2020
ISSN: 1687-6180
DOI: 10.1186/s13634-020-00695-2