High-dimensional properties for empirical priors in linear regression with unknown error variance

نویسندگان

چکیده

We study full Bayesian procedures for high-dimensional linear regression. adopt data-dependent empirical priors introduced in Martin et al. (Bernoulli 23(3):1822–1847, 2017). In their paper, these have nice posterior contraction properties and are easy to compute. Our paper extend theoretical results the case of unknown error variance . Under proper sparsity assumption, we achieve model selection consistency, rates as well Bernstein von-Mises theorem by analyzing multivariate t-distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-dimensional regression with unknown variance

We review recent results for high-dimensional sparse linear regression in the practical case of unknown variance. Different sparsity settings are covered, including coordinate-sparsity, group-sparsity and variation-sparsity. The emphasis is put on non-asymptotic analyses and feasible procedures. In addition, a small numerical study compares the practical performance of three schemes for tuning ...

متن کامل

Bayesian inference for high-dimensional linear regression under mnet priors

Abstract: For regression problems that involve many potential predictors, the Bayesian variable selection (BVS) method is a powerful tool, which associates each model with its posterior probabilities, and achieves superb prediction performance through Bayesian model averaging (BMA). Two challenges of using such models are, specifying a suitable prior, and computing posterior quantities for infe...

متن کامل

Bayesian Sparse Linear Regression with Unknown Symmetric Error

We study full Bayesian procedures for sparse linear regression when errors have a symmetric but otherwise unknown distribution. The unknown error distribution is endowed with a symmetrized Dirichlet process mixture of Gaussians. For the prior on regression coefficients, a mixture of point masses at zero and continuous distributions is considered. We study behavior of the posterior with divergin...

متن کامل

Variance Estimation in High Dimensional Regression Models

We treat the problem of variance estimation of the least squares estimate of the parameter in high dimensional linear regression models by using the Uncorrelated Weights Bootstrap (UBS). We find a representation of the UBS dispersion matrix and show that the bootstrap estimator is consistent if p/n → 0 where p is the dimension of the parameter and n is the sample size. For fixed dimension we sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical papers

سال: 2023

ISSN: ['2412-110X', '0250-9822']

DOI: https://doi.org/10.1007/s00362-022-01390-0